Dạng toán hàm số nghịch biến thường xuất hiện nhiều trong các đề thi THPTQG và trong các đề thi thử của các trường trên toàn quốc. Nhiều bạn vẫn thắc mắc Hàm số nghịch biến khi nào? Điều kiện của nó là gì? Bài viết này của GiaiNgo sẽ giải đáp và giúp các bạn ôn tập tốt dạng toán này!
Hàm số nghịch biến, đồng biến hay còn gọi là hàm số đơn điệu.
Cho K là một khoảng, một đoạn hoặc một nửa khoảng và y = f(x) là một hàm số xác định trên K.
Hàm số y = f(x) được gọi là nghịch biến (giảm) trên K, nếu:
Hàm số f nghịch biến trên K khi và chỉ khi:
Cho hàm số f có đạo hàm trên K.
Nếu f'(x) < 0 với mọi x ∈ K thì f nghịch biến trên K.
Định lí mở rộng
Chỉ xét K là một khoảng
Giả sử hàm số f có đạo hàm trên K
Nếu f'(x) ≤ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f nghịch biến trên K.
Kết luận: Hàm số đồng biến trên các khoảng (-∞;2) và (4;+∞), nghịch biến trên khoảng (2;4).
Ví dụ 4: Tìm m để hàm số: nghịch biến trong khoảng (-1/2;1/2)
Qua những kiến thức trên mà GiaiNgo chia sẻ, hy vọng bạn đọc sẽ nắm vững kiến thức về hàm số nghịch biến khi nào và ôn tập thật tốt. Chúc các bạn thành công!