Có thể bạn không biết, cứ 10 đồ vật xung quanh chúng ta thì có hơn một nửa là có hình chữ nhật. Vậy các tính chất hình chữ nhật là gì? Dựa vào tính chất hình chữ nhật chúng ta có thể xây dựng các nội dung gì? Tất cả sẽ được GiaiNgo giải đáp ngay sau đây!
Hình chữ nhật trong hình học là một tứ giác lồi có 4 góc vuông. Hoặc có thể nói hình chữ nhật là hình bình hành có bốn góc vuông.
Từ “nhật” bắt nguồn từ kí tự 日 (nhật) trong tiếng Nhật. Hình chữ nhật và các tính chất hình chữ nhật là một trong những kiến thức nền tảng trong toán học.
Sau khi xác định được hình chữ nhật, người xem sẽ nắm rõ hơn về các tính chất hình chữ nhật. Có 4 dấu hiệu cơ bản và quan trọng nhất của hình chữ nhật như sau:
Có rất nhiều bài toán theo chiều hướng “ngược”. Chính là dựa vào những dấu hiệu để xác định hình dạng ban đầu. Để làm tốt được dạng bài đó, thì dấu hiệu nhận biết kết hợp với tính chất hình chữ nhật là một cách không thể bỏ qua.
Tính chất hình chữ nhật gồm 4 điều cần ghi nhớ. Những tính chất này không quá phức tạp nhưng đây sẽ là yếu tố quan trọng nhất trong các bài toán hình học.
Diện tích chính là đại lượng biểu thị phạm vi của hình trong mặt phẳng. So với một đa giác thông thường, công thức diện tích hình chữ nhật đơn giản hơn rất nhiều. Có thể có 4 tính chất hình chữ nhật nhưng chỉ có duy nhất một công thức tính hình chữ nhật.
Với một hình chữ nhật có chiều dài b và chiều rộng a thì diện tích của hình chữ nhật S này được xác định với công thức: S = b*a
Chu vi được xem là độ dài của đường bao quanh một hình hai chiều. Một tứ giác được xác định chu vi với tổng độ dài các cạnh của nó.
Hình chữ nhật là hình có 2 cạnh song song có cùng độ dài. Do đó chu vi hình chữ nhật (CV) với a (chiều dài), b (chiều rộng) được xác định với công thức như sau:CV= (a+b)*2
Đường chéo hình chữ nhật là cạnh của 2 tam giác vuông chia đều hình chữ nhật ra làm hai. Do đó để tính được đường chéo hình chữ nhật, ta có thể xem nó như cạnh huyền của tam giác vuông.
Áp dụng định lý Pytago trong một tam giác vuông. Trong đó, 2 cạnh lần lượt là chiều dài (d) và chiều rộng (r) của hình chữ nhật. Ta có công thức tính cạnh huyền c (đường chéo hình chữ nhật) của tam giác đó như sau: c^2 = d^2 + r^2
Đường chéo trong hình chữ nhật là đường thẳng nối hai góc đối diện trong hình chữ nhật. Độ dài hai đường chéo trong hình chữ nhật có độ dài bằng nhau.
Hai đường chéo cắt nhau tại trung điểm của mỗi đường, cắt nhau tạo ra 4 tam giác cân. Hai đường chéo của hình chữ nhật vuông góc với nhau là hình vuông.
Từ đó, tính chất đường chéo hình chữ nhật còn được xem là một kiến thức “con” của tính chất hình chữ nhật.
Hình vuông là hình chữ nhật với 4 cạnh bằng nhau. Hay có thể nói, những tính chất hình chữ nhật thì hình vuông đều có.
Hình chữ nhật có tâm đối xứng là giao điểm của hai đường chéo. Hình vuông cũng vậy, tâm của hình vuông cũng chính là giao điểm của hai đường chéo.
Ngoài ra do có các cạnh bằng nhau nên đường trung bình cũng chính là các trục đối xứng của hình vuông
Đường tròn ngoại tiếp của một đa giác là đường tròn đi qua tất cả các đỉnh của đa giác đó. Hình chữ nhật có tâm đối xứng là giao điểm của hai đường chéo. Khoảng cách từ tâm hình chữ nhật đến các đỉnh chính là bán kính của đường tròn ngoại tiếp hình chữ nhật đó.
Những câu hỏi dựa trên tính chất hình chữ nhật được dùng rất nhiều trong các đề thi. Bên cạnh đó, các bài toán về đường tròn ngoại tiếp được xem là dạng toán nâng cao từ các tính chất hình chữ nhật.
Hình vuông được định nghĩa là một tứ giác đều với các cạnh bằng nhau và các góc bằng nhau. Trong khi đó hình chữ nhật có cặp cạnh vuông góc với nhau sẽ không bằng nhau.
Để một hình chữ nhật được xem là hình vuông, hình chữ nhật đó cần phải có hai cạnh kề bằng nhau. Không chỉ vậy, hai đường chéo còn phải vuông góc và có một đường chéo là phân giác của một góc.
Tuy những tính chất hình chữ nhật đều giống với hình vuông, song vẫn tồn tại những điểm khác nhau như sau:
GiaiNgo sẽ đưa đến các bạn một số bài tập tham khảo dựa trên những công thức đã đề cập ở trên như sau:
Cho hình chữ nhật ABCD có độ dài chiều dài và chiều rộng của hình chữ nhật lần lượt là 7cm và 5cm. Tính diện tích hình chữ nhật?
Bài giải
Áp dụng công thức ta có, diện tích hình chữ nhật ABCD là:
S = 7.5 =35 (cm2)
Cho hình chữ nhật ABCD có độ dài chiều dài và chiều rộng của hình chữ nhật lần lượt là 7cm và 5cm. Tính chu vi hình chữ nhật?
Áp dụng công thức ta có, chu vi hình chữ nhật ABCD là:
S = 2( 7 + 5 ) = 24 (cm)
Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Chứng minh tứ giác AHCE là hình chữ nhật.
Trong Δ AHC vuông có I là trung điểm của AC
⇒ HE là đường trung tuyến của Δ AHC.
⇒ HI = 1/2AC = AI = IC.
Mà E đối xứng với H qua I ⇒ HI = IE.
Khi đó ta có HI = IE = AI = IC.
Xét Δ HCE có CI là đường trung tuyến ứng với cạnh HE
mà CI = 1/2HE ⇒ Δ HCE vuông tại C.
Tương tự xét với Δ AHE,Δ AEC đều là các tam giác vuông tại A, E.
Xét tứ giác AHCE có EAHˆ = AHCˆ = HCEˆ = CEAˆ = 90 độ
Theo tính chất hình chữ nhật ⇒ AHCE là hình chữ nhật.
Có thể nhận thấy tính chất hình chữ nhật thật ra rất dễ nhớ. Nếu bạn nhận biết rõ những dấu hiệu và các công thức liên quan, những bài toán hình học sẽ chẳng làm khó được bạn. Đừng quên bổ sung kiến thức cùng GiaiNgo trong các bài viết sau nhé!