Toán học là một trong những bộ môn bắt buộc mà chúng ta được học từ bé đến lớn. Toán học có rất nhiều ứng dụng trong cuộc sống. Một trong đó là số thực. Vậy số thực là gì? Cùng GiaiNgo tìm hiểu trong bài viết sau đây!
Số thực là tập hợp số bao gồm các số dương (1, 2, 3,…), số 0, số âm (-1, -2, -3,…), số hữu tỉ (5/2, -2/3), số vô tỉ (số pi, số √2). Số thực có thể được xem là các điểm nằm trên trục số dài vô hạn.
Tập hợp số thực được kí hiệu là R. Số thực chính là tập hợp các số hữu tỉ và vô tỉ: R = Q ∪ I.
Ngoài ra, một số thực có thể là số đại số hoặc số siêu việt. Số thực bao gồm số thực âm và số thực dương.
Như vậy, số thực bao gồm:
Các ví dụ về số thực là:
Trục số thực là một trục số nằm ngang để biểu diễn tập hợp các số thực. Mỗi số thực được biểu diễn bởi một điểm trên trục số.
Ngược lại, mỗi điểm trên trục số sẽ biểu diễn một số thực. Chỉ có tập hợp số thực mới có thể lấp đầy trục số.
Trong tập hợp R, ta cũng định nghĩa các phép toán cộng trừ, nhân, chia, lũy thừa, căn bậc,…Và trong các phép toán, các số thực cũng có các tính chất như các phép toán trong tập hợp các số hữu tỉ.
Các tính chất của số thực:
Số thực có hai thuộc tính cơ bản là thuộc tính trường có thứ tự và thuộc tính cận trên thấp nhất.
Thuộc tính trường có thứ tự
Thuộc tính này chỉ rằng các số thực bao gồm một trường, với phép cộng và phép nhân cùng với phép chia cho các số khác không. Chúng có thể được sắp xếp hoàn toàn trên một trục số hoành theo cách tương thích với phép cộng và phép nhân.
Thuộc tính cận trên thấp nhất
Thuộc tính này chỉ ra rằng nếu tập hợp một số thực không trống có giới hạn trên thì nó có cận trên chính là những số thực nhỏ nhất.
Tập hợp R là ký hiệu của tập hợp số thực, bao gồm các số thực. Số thực gồm có số hữu tỉ và số vô tỉ.
Ví dụ: −1/5; 2/3,….
Ví dụ: √2; 3,1415…
Ta có: N ⊂ Z ⊂ Q, cho nên R = Q ∪ I.
Tập số thực R phủ kín trục số.
Số nguyên là tập hợp số bao gồm các số 0, số tự nhiên dương và số tự nhiên âm. Tập hợp số nguyên tuy là vô hạn nhưng có thể đếm được.
Số nguyên được chia làm hai loại là số nguyên dương và số nguyên âm. Kí hiệu của tập số nguyên là Z.
Sự khác nhau giữa số nguyên và số thực là:
Dạng 1: Các câu hỏi về bài tập hợp số
Phương pháp sử dụng: Sử dụng các ký hiệu về tập hợp số. Trong đó:
Ta có quan hệ giữa các tập hợp số như sau: N ⊂ Z ⊂ Q ⊂ R; I ⊂ R.
Dạng 2: Tìm số chưa biết trong một đẳng thức
Phương pháp sử dụng:
Dạng 3: Tính giá trị của biểu thức nào đó
Qua bài viết trên, GiaiNgo đã giúp bạn biết được khái niệm số thực là gì và cách kí hiệu của số thực. Giờ đây, chúng ta có thể áp dụng ngay kiến thức để giải các bài toán thôi nào.