Các trường hợp bằng nhau của tam giác vuông là kiến thức vô cùng hữu ích trong chương trình Toán lớp 7. Mời các bạn đọc giả cùng GiaiNgo tóm tắt lý thuyết cơ bản và áp dụng giải một số bài tập nhé!
Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.
Để kí hiệu sự bằng nhau của tam giác ABC và tam giác DEF, ta có thể viết: ΔABC = ΔDEF
Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (cạnh – góc – cạnh).
Ví dụ minh họa:
Xét hai tam giác ABC và DEF có:
AB = DE
AC = DF
⇒ Δ ABC = ΔDEF (hai cạnh góc vuông).
Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc ).
Góc C = góc F
⇒ Δ ABC = ΔDEF (cạnh góc vuông – góc nhọn).
Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc).
Xét hai tam giác ABC và EDF có:
BC = EF
Góc B = góc E
⇒ Δ ABC = ΔDEF (cạnh huyền – góc nhọn).
Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
⇒ Δ ABC = ΔDEF (cạnh huyền – cạnh góc vuông).
Xem thêm: Công thức tính cạnh huyền tam giác vuông đầy đủ nhất Các trường hợp đồng dạng của tam giác vuông cần nhớ Tính chất trực tâm là gì? 5 tính chất cơ bản trong tam giác
Xem thêm:
Trên mỗi hình 143, 144, 145 có các tam giác vuông nào bằng nhau? Vì sao?
Trả lời:
Hình 143:
Xét ΔABH vuông tại H và ΔACH vuông tại H có:
AH cạnh chung
BH = CH (giả thiết)
⇒ ΔABH = ΔACH (hai cạnh góc vuông).
Hình 144:
Xét ΔDKE vuông tại K và ΔDKF vuông tại F có:
DK cạnh chung
Góc EDK = góc FDK
⇒ ΔDKE = ΔDKF (cạnh góc vuông – góc nhọn kề).
Hình 145:
Xét ΔOMI vuông tại M và ΔONI vuông tại N có:
OI chung
Góc MOI = góc NOI (giả thiết)
⇒ ΔOMI = ΔONI (cạnh huyền – góc nhọn).
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (hình 147). Chứng minh rằng ΔAHB = ΔAHC (giải bằng 2 cách).
Cách 1:
Tam giác ABC cân tại A nên góc B = góc C và AB = AC (tính chất tam giác cân).
Xét hai tam giác AHB và AHC đều vuông tại H, có:
AB = AC (chứng minh trên)
Góc B = góc C (chứng minh trên)
⇒ ΔAHB = ΔAHC (cạnh huyền – góc nhọn).
Cách 2:
Xét hai tam giác vuông AHB và AHC có:
⇒ ΔAHB = ΔAHC (cạnh huyền – cạnh góc vuông).
Các tam giác vuông ABC và DEF có góc A = góc D = 90 độ, AC = DF. Hãy bổ sung thêm một điều kiện bằng nhau để ΔABC = ΔDEF
Trường hợp 1: ΔABC=ΔDEF theo trường hợp hai cạnh góc vuông.
Xét hai tam giác vuông ABC và DEF có:
AC = DF (giả thiết)
Bổ sung thêm điều kiện AB = DE thì ΔABC = ΔDEF (hai cạnh góc vuông).
Trường hợp 2: ΔABC = ΔDEF theo trường hợp cạnh góc vuông – góc nhọn kề.
Bổ sung thêm điều kiện góc C = góc F thì ΔABC = ΔDEF (cạnh góc vuông – góc nhọn kề).
Trường hợp 3: ΔABC = ΔDEF theo trường hợp cạnh huyền cạnh góc vuông.
Bổ sung thêm điều kiện BC = EF thì ΔABC = ΔDEF (cạnh huyền – cạnh góc vuông).
Trên đây là tất tần tật kiến thức về các trường hợp bằng nhau của tam giác vuông. Hi vọng bài viết này của GiaiNgo hữu ích cho các bạn. Đừng quên ủng hộ GiaiNgo ở những chủ đề tiếp theo nhé!