Bên cạnh các công thức tính diện tích, tính chu vi tam giác thì cách tính đường cao trong tam giác cân cũng là một trong những dạng bài tập thường gặp ở Toán lớp 9. Vậy đường cao trong tam giác cân là gì? Cùng GiaiNgo tìm hiểu qua bài viết sau đây.
Đường cao trong tam giác là đoạn thẳng kẻ từ một đỉnh và vuông góc với cạnh đối diện. Cạnh đối diện này được gọi là đáy tương ứng với đường cao.
Mỗi tam giác có 3 đường cao. Độ dài của đường cao trong tam giác được xác định là khoảng cách giữa đỉnh và đáy.
Khi làm bài tập, các bạn cần phải xác định đúng và phân loại được các loại đường cao trong tam giác thường, vuông, cân để giải cho nhanh và chính xác.
Từ đường cao trong tam giác, bạn dễ dàng suy luận đường cao trong tam giác cân là gì rồi nhé!
Tính chất đường cao trong tam giác cân gồm:
Đường cao trong tam giác cân bằng bình phương độ dài một cạnh của tam giác trừ bình phương độ dài cạnh đáy chia bốn.
Công thức: h2 = a2 − b2/4
Trong đó:
Như vậy, khi biết thành phần như độ dài một cạnh của tam giác và cạnh đáy tương ứng với chiều cao từ đỉnh của là có thể tính được đường cao trong tam giác.
Ví dụ: Cho tam giác ABC cân tại A, đường cao AH vuông góc tại H như sau. Tính đường cao AH.
Hướng dẫn
Vì tam giác ABC cân tại A, đường cao AH đồng thời là đường trung tuyến nên:
Áp dụng định lý Pythagore trong tam giác vuông ABH vuông tại H ta có:
AH2 + BH2 = AB2
=> AH2 = AB2 − BH2
Cách tính đường cao trong tam giác cân thật đơn giản phải đúng không nào. Hãy ghi chú cẩn thận và tùy từng trường hợp mà áp dụng cho chính xác nhé.
Xem thêm: Tính chất đường phân giác trong tam giác? Lý thuyết & bài tập Cách chứng minh tam giác cân? Dấu hiệu, tính chất, công thức Tính chất trọng tâm tam giác và cách xác định trọng tâm
Xem thêm:
Để hiểu hơn về nội dung đường cao trong tam giác cân, chúng ta cùng giải các bài tập về tính đường cao trong tam giác cân nhé.
Cho tam giác cân ABC cân tại A có độ dài hai cạnh AB = AC = 4cm, BC = 14m. Tính chiều dài đường cao trong tam giác cân ABC.
Trả lời
Kẻ đường cao AH vuông góc với BC tại H.
Vì đường cao tam giác cân đi qua trung điểm của cạnh đáy nên:
BH = HC = BC/2 = 14/2 = 7 cm
Áp dụng công thức bên trên ta có:
=> AH2 = AB2 − BH2 = 16 – 7 = 9
Độ dài AH = √9 = 3 cm.
Tính chiều dài đường cao trong tam giác cân có độ dài 2 cạnh bằng nhau là 2cm và độ dài cạnh còn lại là 3.
Áp dụng công thức trên ta có :
Độ dài đường cao trong tam giác cân h = √[ a2 – (b/2)2] = √(4 – (1.5)2) = 1.32 (cm)
Cho tam giác DEF cân tại A có DE + DF = 22cm, EF = 10. Kẻ DI vuông góc với EF tại I. Tính độ dài đường cao DI.
Vì tam giác DEF cân tại D nên DE = DF = 22/2 = 11 cm
Vì đường cao tam giác cân đi qua trung điểm của cạnh đáy nên
EI = IF = EF/2 = 10/2 = 5 cm
DI2 + EI2 = DE2
=> DI2 = DE2 − EI2 = 121 – 25 = 96
Độ dài DI = √96 = 4√6 cm.
Cho tam giác MNP, 2 đường cao MH và NE cắt nhau tại G. Chọn đáp án đúng:
A. G là trọng tâm của tam giác MNP.
B. G là tâm đường tròn nội tiếp tam giác MNP.
C. PG là đường cao của tam giác MNP.
D. PG là đường trung trực của tam giác MNP.
Đáp án: B
Cho tam giác MNP cân tại M biết MH là đường trung tuyến khi đó:
A. MHNP vuông góc.
B. MH là đường trung trực của NP.
C. MH là đường phân giác của góc NMP.
D. A, B, C đều đúng.
Đáp án: D
Vừa rồi GiaiNgo đã chia sẻ cho bạn những thông tin về đường cao trong tam giác cân. Hy vọng qua bài viết trên bạn đã làm được chính xác dạng Toán này. Đừng quên theo dõi GiaiNgo để biết thêm nhiều kiến thức bổ ích trong học tập nhé!